Relationship Between Cerebral Oxygenation and Metabolism During Rewarming in Newborn Infants After Therapeutic Hypothermia Following Hypoxic-Ischemic Brain Injury.
نویسندگان
چکیده
Therapeutic hypothermia (TH) has become a standard of care following hypoxic ischemic encephalopathy (HIE). After TH, body temperature is brought back to 37 °C over 14 h. Lactate/N-acetylasperatate (Lac/NAA) peak area ratio on proton magnetic resonance spectroscopy ((1)H MRS) is the best available outcome biomarker following HIE. We hypothesized that broadband near infrared spectroscopy (NIRS) measured changes in the oxidation state of cytochrome-c-oxidase concentration (Δ[oxCCO]) and cerebral hemodynamics during rewarming would relate to Lac/NAA. Broadband NIRS and systemic data were collected during rewarming from 14 infants following HIE over a mean period of 12.5 h. (1)H MRS was performed on day 5-9. Heart rate increased by 20/min during rewarming while blood pressure and peripheral oxygen saturation (SpO2) remained stable. The relationship between mitochondrial metabolism and oxygenation (measured as Δ[oxCCO] and Δ[HbD], respectively) was calculated by linear regression analysis. This was reviewed in three groups: Lac/NAA values <0.5, 0.5-1, >1. Mean regression coefficient (r (2)) values in these groups were 0.41 (±0.27), 0.22 (±0.21) and 0.01, respectively. The relationship between mitochondrial metabolism and oxygenation became impaired with rising Lac/NAA. Cardiovascular parameters remained stable during rewarming.
منابع مشابه
Rewarming from therapeutic hypothermia induces cortical neuron apoptosis in a swine model of neonatal hypoxic-ischemic encephalopathy.
The consequences of therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy are poorly understood. Adverse effects from suboptimal rewarming could diminish neuroprotection from hypothermia. Therefore, we tested whether rewarming is associated with apoptosis. Piglets underwent hypoxia-asphyxia followed by normothermic or hypothermic recovery at 2 hours. Hypothermic groups were divid...
متن کاملImpaired cerebral autoregulation and brain injury in newborns with hypoxic-ischemic encephalopathy treated with hypothermia.
Impaired cerebral autoregulation may contribute to secondary injury in newborns with hypoxic-ischemic encephalopathy (HIE). Continuous, noninvasive assessment of cerebral pressure autoregulation can be achieved with bedside near-infrared spectroscopy (NIRS) and systemic mean arterial blood pressure (MAP) monitoring. This study aimed to evaluate whether impaired cerebral autoregulation measured ...
متن کاملA pilot cohort study of cerebral autoregulation and 2-year neurodevelopmental outcomes in neonates with hypoxic-ischemic encephalopathy who received therapeutic hypothermia
BACKGROUND Neurodevelopmental disabilities persist in survivors of neonatal hypoxic-ischemic encephalopathy (HIE) despite treatment with therapeutic hypothermia. Cerebrovascular autoregulation, the mechanism that maintains cerebral perfusion during changes in blood pressure, may influence outcomes. Our objective was to describe the relationship between acute autoregulatory vasoreactivity during...
متن کاملPressure passivity of cerebral mitochondrial metabolism is associated with poor outcome following perinatal hypoxic ischemic brain injury.
Hypoxic ischemic encephalopathy (HIE) leads to significant morbidity and mortality. Impaired autoregulation after hypoxia-ischaemia has been suggested to contribute further to injury. Thalamic lactate/N-Acetylasperate (Lac/NAA) peak area ratio of > 0.3 on proton (1H) magnetic resonance spectroscopy (MRS) is associated with poor neurodevelopment outcome following HIE. Cytochrome-c-oxidase (CCO) ...
متن کاملChanges in Cerebral Oxidative Metabolism during Neonatal Seizures Following Hypoxic–Ischemic Brain Injury
Seizures are common following hypoxic-ischemic brain injury in newborn infants. Prolonged or recurrent seizures have been shown to exacerbate neuronal damage in the developing brain; however, the precise mechanism is not fully understood. Cytochrome-c-oxidase is responsible for more than 90% of ATP production inside mitochondria. Using a novel broadband near-infrared spectroscopy system, we mea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in experimental medicine and biology
دوره 923 شماره
صفحات -
تاریخ انتشار 2016